Interpretation of Amide I Difference Bands Observed during Protein Reactions Using Site-Directed Isotopically Labeled Bacteriorhodopsin as a Model System

نویسندگان

  • Karin Hauser
  • Martin Engelhard
  • Noga Friedman
  • Mordechai Sheves
  • Friedrich Siebert
چکیده

Reaction-induced infrared difference spectra show characteristic amide I spectral changes, which indicate conformational changes of the protein backbone but which cannot be interpreted at a molecular level. To obtain some insights into their causes, we used bacteriorhodopsin as a model system and investigated its BR f N transition during which the largest amide I changes are observed. For the molecular interpretation, we labeled a single peptide CdO group at specific positions of the backbone with 13C and monitored the resulting isotope effects. This has been achieved by replacing specific amino acids with a cysteine. Because wild-type bacteriorhodopsin does not contain this amino acid, (1-13C)cysteine can be incorporated into the mutants for site-directed isotopic labeling. Although the isotope-induced spectral changes are very small, we observed clear isotope effects for the middle to extracellular part of helices B, C, and F, indicating that the backbone of these parts of the protein is distorted during the reaction, whereas no label effects could be identified for the E-F loop and for the cytosolic regions of helices E and F. The results are discussed within the framework of recent experimental and theoretical studies of the amide I band, and they are correlated to the structural changes observed by other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active site lysine backbone undergoes conformational changes in the bacteriorhodopsin photocycle.

Results are presented demonstrating that the backbone of the active site lysine of bacteriorhodopsin undergoes light-induced structural alterations during bacteriorhodopsin-mediated light-induced proton pumping. This conclusion is based on difference Fourier transform infrared spectroscopy of isotopically labeled bacteriorhodopsin. The data demonstrate that the backbone carbonyl of lysine achie...

متن کامل

Participation of bacteriorhodopsin active-site lysine backbone in vibrations associated with retinal photochemistry.

Bacteriorhodopsin (bR) has been biosynthetically prepared with lysine deuterated at its alpha carbon (C alpha--H). The labeled membranes containing bR were investigated by difference Fourier transform infrared (FTIR) spectroscopy. It has been derived from K/bR and M/bR difference spectra (K and M are photocycle intermediates) that several bands previously assigned to the retinal chromophore are...

متن کامل

Comparison of the Structural Changes Occurring during the Primary Phototransition of Two Different Channelrhodopsins from Chlamydomonas Algae

Channelrhodopsins (ChRs) from green flagellate algae function as light-gated ion channels when expressed heterologously in mammalian cells. Considerable interest has focused on understanding the molecular mechanisms of ChRs to bioengineer their properties for specific optogenetic applications such as elucidating the function of specific neurons in brain circuits. While most studies have used ch...

متن کامل

Vibrational energy relaxation (VER) of isotopically labeled amide I modes in cytochrome c: Theoretical investigation of VER rates and pathways

Using a time-dependent perturbation theory, vibrational energy relaxation (VER) of isotopically labeled amide I modes in cytochrome c solvated with water is investigated. Contributions to the VER are decomposed into two contributions from the protein and water. The VER pathways are visualized using radial and angular excitation functions for resonant normal modes. Key differences of VER among d...

متن کامل

Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway

Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002